
Pressure induced B3–B1 structural phase transformation and elastic properties of semi-

magnetic semiconductors Zn1−xMxSe (M = Mn, Fe and Cd)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys.: Condens. Matter 20 075204

(http://iopscience.iop.org/0953-8984/20/7/075204)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 10:34

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/20/7
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 20 (2008) 075204 (10pp) doi:10.1088/0953-8984/20/7/075204

Pressure induced B3–B1 structural phase
transformation and elastic properties of
semi-magnetic semiconductors
Zn1−xMxSe (M = Mn, Fe and Cd)
Dinesh Varshney1,3, U Sharma1 and N Kaurav2,4

1 School of Physics, Vigyan Bhawan, Devi Ahilya University, Khandwa Road Campus,
Indore 452001, India
2 Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan

E-mail: vdinesh33@rediffmail.com

Received 30 August 2007, in final form 19 December 2007
Published 25 January 2008
Online at stacks.iop.org/JPhysCM/20/075204

Abstract
We have employed an effective interionic interaction potential approach to describe the
high-pressure phase transformation and mechanical properties of diluted magnetic
semiconductors Zn1−x MxSe (M = Mn, Fe and Cd). This potential consists of the long-range
Coulomb and three-body interactions (TBI) and the Hafemeister and Flygare type short-range
overlap repulsion extended up to the second neighbour ions and the van der Waals (vdW)
interaction. Our calculated results have revealed reasonably good agreement with the available
experimental data on the phase transition pressures (Pt = 10, 12, 10 GPa) and the elastic
properties of Zn1−xMx Se. The equation of state curves (plotted between V (P)/V (0) and
pressure) for both the zincblende (B3) and rocksalt (B1) structures obtained by us are in fairly
good agreement with the experimental results. The calculated values of the volume collapses
(�V (P)/V (0)) are also closer to the observed data. Further, the variations of the second- and
third-order elastic constants with pressure have followed a systematic trend, which are almost
identical to those exhibited by the observed data measured for other compounds of this family.

1. Introduction

The structural phase transformations caused at high pressures
in zincblende (ZB) structure (B3) compounds have attracted
unprecedented interest in the recent past [1–3]. The spin
splitting of the conduction bands in III–V and II–VI zincblende
semiconductors (ZBS) have been determined by Chantis et al
[2]. Also, the optical and vibrational modes of some of
these compounds (HgTe, CdTe and ZnTe) have been studied
by Belogorokhov et al [3]. The technological importance of
these binary compounds has been exhibited by the diluted
magnetic semiconductors (DMS) AII

1−x MnxCVI [4], formed
by replacing randomly a fraction of the cations in binary
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compound semiconductor alloys with magnetic ions. These
DMS materials display interesting magnetic properties as well
as the exchange interaction between the localized magnetic
moment and the band electrons, resulting in a host of novel
effects in comparison with the ternary nature of dilution like
Mg or Be in AB compounds [5].

The phonons are believed to be an instructive probe for
determining the structural aspects and Raman scattering [6]
and they have been employed to study the zone-centre
optical phonons in some of the DMS materials at ambient
pressure. These investigations reveal that Cd1−xMnx Te
exhibits a two-mode behaviour, while Zn1−xMnx Te displays
an intermediate-mode behaviour in the phonon dispersion
curves [7]. Earlier, Arora and co-workers [8] made a
detailed Raman scattering investigation of zone-centre optical
phonons and the intermediate high-pressure phase transition in
Zn1−xMnxSe. Under hydrostatic pressure, the mixed crystals
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undergo a high-pressure phase transition between 28 and
52 kbar depending on the composition.

Energy-dispersive x-ray-diffraction (EDXD) is a powerful
technique for studying the pressure-induced transition of
Zn1−xMx Se bulk samples with M = Mn, Fe and Cd [9, 10].
These results show that phase transitions occur from the
ZB structure (B3) to rocksalt (RS) structure (B1) under the
application of hydrostatic pressure. It is interesting to note that
pure ZnSe undergoes a transition from the B3 to B1 structure
at about 13 GPa [11]. In particular, Lin et al [9] have argued
that this reduction of transition pressure in comparison to the
binary compounds can be seen in terms of fractional volume
change at the B3 → B1 phase transition pressures.

Theoretical studies of structural mechanical and vibra-
tional properties of II–VI, III–V and other doped semicon-
ductors under pressure are now routinely being performed by
means of ab initio calculations. The accuracy of total ener-
gies obtained within the local density approximation is in many
cases sufficient to predict which structure, at a given pres-
sure, has the lowest free energy, although most calculations
still refer to zero temperature. Furthermore, by comparing the
free energies of various guessed crystal structures, new ab ini-
tio molecular dynamics methods allow a better determination
of the structures and understanding of transformation mecha-
nisms and perform the structural optimizations. Despite the
rapid development of computational techniques, the nature of
interatomic forces is not well understood in these materials and
phenomenological lattice dynamical models that take into ac-
count various interaction energies for the determination of sta-
ble structure and cover chemical trends in the atomic charac-
teristics are important.

Theoretical prediction of the phase transition in II–
VI semiconductors has been done by means of the lattice
model [12] and accurate first-principles calculations [2, 13].
The reported theoretical values for the B3–B1 transition
pressure in ZnSe are 4.4 [13] and 28.2 [12] GPa. Powder
crystal of ZnSe studied by Raman scattering spectroscopy
reveals a phase-transition pressure of 14.4 GPa, attributed
to the ZB to RS structure transformation [9]. Energy-
dispersive x-ray-diffraction (EDXD) is used to study the
pressure-induced transitions for doped ZnSe and the Pts of
Zn0.84Fe0.16Se, Zn0.76Mn0.24Se and Zn0.9Cd0.1Se are 11.4, 9.6
and 9.5 GPa, respectively [10]. The doping dependence
is further investigated and it is noticed that Zn1−x MnxSe
shows structural transitions from the ZB (B3) to the
RS phase (B1). The pressure-induced phase transition
pressures occur at 13.1, 12.4, 12.0, 11.8 and 9.6 GPa
for Zn0.984Mn0.016Se, Zn0.974Mn0.026Se, Zn0.947Mn0.053Se,
Zn0.93Mn0.07Se and Zn0.76Mn0.24Se, respectively [10]. In
addition, Chelikowsky [14] and Zhang and Choen [15] used
the pseudopotential total energy (PTE) method to compute
the phase transition pressures for all the III–V compound
semiconductors and stressed that the RS structure is preferred
as the ionicity (or charge transfer) is increased in these
materials. This suggestion motivated us to employ the concept
of charge transfer effects [16–18] in DMS materials.

Usually, the mechanical properties of crystalline solids
provide valuable information about their interatomic forces

as well as their mechanical properties. Among these are
the higher-order elastic constants and the pressure derivatives
of second-order elastic constants (SOECs). Sörgel and
Scherz [19] have performed first-principles calculations of
cubic ZnSe and ZnTe crystals to deduce the SEOCs and
third-order elastic constants (TOECs) under uniaxial strain,
as well as under biaxial strain. Moreover, the ultrasonic
transit time measurements [20] near room temperature in
Zn1−xMnxSe (x = 0.0–0.53) reveal that increase in Mn
doping concentration reduces the SEOCs and holds hexagonal
symmetry.

The modelling of lattice models in binary semiconducting
compounds is a complicated task and, in many instances, must
be guided by experimental evidence of the low degree of
freedom in order to obtain a correct minimal model which will
capture the observed effect and will make useful predictions.
First-principles density functional theory and microscopic
tight binding models, as well as effective Hamiltonian
models, have been used successfully to address the electronic,
magnetic and structural ground state properties. On the other
hand, phenomenological lattice models [16–18] have proved
very successful in obtaining a qualitative and quantitative
understanding with proper parametrization. Despite their
successes, the basic nature of these interatomic potentials is
such that they are inadequate to reveal a realistic picture of
the interaction mechanism in ionic solids. The inadequacy of
the two-body interaction is clearly indicated by its failure to
explain the Cauchy violations in ionic crystals [16–18, 21, 22].
An acceptable explanation of these violations [22] was given
by Löwdin [16] and Lundqvist [17] in terms of three-
body interactions (TBI), which have their origin in the non-
orthogonality of electron wave functions [16, 17] or charge
transfer (or exchange of charge) between adjacent ions [18].

In the present paper, we have incorporated the effects of
the TBI, which arise from the charge transfer mechanism [18]
caused by the deformation (or exchange of small charge) of the
electron shells of the overlapping ions. Besides TBI effects, we
have included the van der Waals (vdW) interaction effects [22].
The overlap repulsion is expressed by the Hafemeister and
Flygare [23] type interactions extended up to the second
neighbour ions. The estimation of the vdW coefficients
has been done by following the Slater–Kirkwood variational
method with the idea that both the ions are polarizable.

The phase transition pressures, the volume collapses and
the mechanical properties (higher-order elastic constants) are
obtained from the present model, which incorporates the long-
range Coulomb and TBI effects and the short-range vdW
attraction and the overlap repulsive interactions operative up
to the second neighbour ions within the Hafemeister and
Flygare framework. The computed results have been compared
with the available experimental data and are presented in
the subsequent sections along with a brief description of the
present TBI model as illustrated in appendix A. Comparison
of the phase transition pressures, the volume collapses and
the mechanical properties (higher-order elastic constants) in
diluted magnetic II–VI semiconductors has allowed us to attain
useful insights about the relative strength of elastic and thermal
properties. Theoretical results are compared and discussed in
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section 3 with the existing first-principles, experimental and
predicted data with concluding remarks presented in section 4.

2. Three-body potential model computational
approach

An application of pressure on a crystal causes a decrease
in its volume leading to the charge transfer (or three-body)
interaction due to the deformation of the electron shells of the
adjacent ions [16–18] (please see appendix A for details). The
effect of charge transfer has been incorporated in the Gibbs free
energy (G = U + PV − T S). Here, U is the internal energy,
which at T = 0 K is equivalent to the lattice (or cohesive)
energy. S is the vibrational entropy, P is the pressure and V
the volume. At T = 0 K, the Gibbs free energy is given by [18]

GB3(r) = UB3(r) + PV (= 3.08r 3) (1)

for the ZB (B3, real) structure and

GB1(r
′) = UB1(r

′) + PV (= 2.0r ′3) (2)

for the RS (B1, hypothetical) structure. Here the abbreviations
UB3(r) and UB1(r ′) stand for cohesive energies for the ZB
(B3) and RS (B1) structure, respectively. They consist of the
long-range Coulomb and three-body interaction and the short-
range vdW and overlap repulsive interactions effective up to
the second neighbour ions. Their relevant expressions are
written as [18]

UB3 = (−αM Ze2/r)[Z + 2n f (r)] − Cr−6 − Dr−8

+ nbβi j exp[(ri + r j − ri j )/ρ]
+ (n′b/2)[βi i exp((2ri − kri j)/ρ)

+ β j j exp((2r j − kri j )/ρ)] (3)

UB1 = (−α′
M Ze2/r ′)[Z + 2m f (r ′)] − Cr ′−6 − Dr ′−8

+ mbβi j exp[(ri + r j − r ′
i j)/ρ]

+ (m ′b/2)[βi i exp((2ri − k ′r ′
ii )/ρ)

+ β j j exp((2r j − k ′r ′
j j)/ρ)] (4)

where αm (α′
m) are the Madelung constants for B3 (B1) phases.

C(C ′) and D(D′) are the overall vdW coefficients for B3
(B1) phases, βi j (i, j = 1, 2) are the Pauling coefficients
defined [22] as βi j = 1 + (Zi/ni) + (Z j/n j) with Zi(Z j)

and ni (n j ) as the valence and the number of electrons in the
outermost orbit. Ze is the ionic charge and b (ρ) are the range
(hardness) parameters. r(r ′) are the nearest neighbour ion
separations for ZB (RS) structures. The function f (r) ( f (r ′))
appearing in the second term of equation (3), (4) is a function
that depends on the overlap integrals and measures the size
differences between ions. Thus f (r) is the three-body force
parameter which takes into account the charge transfer effect
and is expressed as f (r) = f0 exp(−r/ρ) [16, 18]. ri(r j ) are
the ionic radii of ions i( j). The charge transfer mechanism and
the nature of the TBI is further illustrated in appendix A.

In order to demonstrate the effects of the charge transfer
mechanism, we have computed the phase transition pressures,
the associated volume collapses and the mechanical behaviour
of the diluted magnetic semiconductor materials. The
expressions for the TOECs and the pressure derivatives of the
SOECs are presented in appendix B. The computed results are
presented and discussed in the next section.

3. Results and discussion

Upon the application of pressure, new crystal phases
appear in materials and the relative stability of two crystal
structures needs an extremely accurate prediction. Theoretical
studies of cohesive, structural and vibrational properties of
semiconductors under pressure are now being accurately
performed by means of ab initio calculations. Also,
several empirical models suggest that the key for predicting
relative structural energies is not absolute accuracy but
the careful incorporation of the chemical trends in the
atomic characteristics. The phenomenological models are
interpretative rather than predictive of the stability of phases.

The present model has been applied to investigate
the structural phase transitions and elastic properties in
Zn1−xMx Se (M = Mn, Cd and Fe) DMS materials. The phase
transition pressure is determined by calculating the Gibbs free
energy G = U + PV − T S for the two phases. The Gibbs
free energy becomes equal to the enthalpy H = U + PV at
T = 0 K. Usually high-pressure experiments result in huge
pressures that causes a reduction of the material volume and
the temperature variations will normally produce much smaller
changes in the relative stabilities of different phases. It is thus
physically meaningful to be concerned with the Gibbs free
energy at zero temperature, which is the enthalpy H . At T =
0 K, the thermodynamically stable phase at pressure P is the
one with the lowest enthalpy and the zero-temperature theory
results in consistent agreement with experiment; however, the
effects of finite temperature may be significant.

The effective interionic potential is constructed in a
hierarchical and easily generalizable manner. We have studied
such structural and elastic properties in an ordered way. The
values of G or H have been computed using the values of the
three model parameters, namely, range, hardness and the three-
body parameter (b, ρ and f (r)), which have been evaluated
from the equilibrium condition

∣
∣
∣
∣

dU(r)

dr

∣
∣
∣
∣
r=r0

= 0 (5)

and the bulk modulus (BT):
∣
∣
∣
∣

d2U(r)

dr 2

∣
∣
∣
∣
r=r0

= (9kr0)
−1 BT (6)

using the values of lattice constant (2a), bulk modulus (BT)

and the modified ionic charge. The values of the overall
vdW coefficients C and D involved in equations (3) and (4)
have been evaluated from the well-known Slater–Kirkwood
variational method [24] and are listed in table 1. We consider
the DMS materials Zn1−x MxSe (M = Mn, Cd and Fe) to
be partially ionic and understand their structural and elastic
properties in an ordered way.

It is perhaps worth remarking that we have deduced
the values of hardness b and range ρ and the three-body
force parameter f (r) from knowledge of the equilibrium
distance and the bulk modulus following the equilibrium
conditions for binary compounds [25]. The values of electronic
polarizabilities for ZnSe, MnSe, FeSe and CdSe were taken
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Table 1. The values of van der Waals (vdW) coefficients ci j (i, j = 1, 2) (in units of 10−60 erg cm6), di j (i, j = 1, 2) (in units of
10−76 erg cm8) and overall vdW coefficients (C, D) for Zn1−x Mx Se semiconductors.

vdW coefficients

Solids c11 c12 c22 C d11 d12 d22 D

ZnSe 38.04 112.82 533.96 709.24 12.07 115.26 702.22 586.33
MnSe 74.84 178.14 533.96 1743.23 36.98 181.24 702.22 1409.63
FeSe 46.88 134.04 533.96 1403.97 18.87 135.75 702.22 1122.75
CdSe 12.83 231.34 533.96 1259.79 61.14 234.94 702.22 1082.45
Zn0.83Mn0.17Se 44.45 125.06 533.96 765.02 15.35 127.19 702.22 635.49
Zn0.84Fe0.16Se 39.62 116.46 533.96 725.70 13.06 118.72 702.22 600.57
Zn0.9Cd0.1Se 45.39 125.44 533.96 767.01 15.28 127.7 702.22 637.68

directly from experimental data [26] using the additivity rule
and Lorentz factor (4π/3). The values for the corresponding
doped semiconductors have been evaluated using the virtual
crystal approximation [27] and Vegard’s law [28]. Knowledge
of C and D, listed in table 1, enables us to estimate three model
parameters for binary semiconductors XSe (X = Zn, Mn, Cd
and Fe). We have obtained the model parameters (b, ρ and
f (r)) for their mixed crystals Zn1−x MxSe (M = Mn, Cd and
Fe) using Vegard’s law:

b(Zn1−xMx Se) = (1 − x)b(ZnSe) + xb(MSe), (7)

ρ(Zn1−x MxSe) = (1 − x)ρ(ZnSe) + xρ(MSe). (8)

f (r)(Zn1−xMx Se) = (1−x) f (r)(ZnSe)+x f (r)(MSe). (9)

The input data for undoped and doped semiconductors
with their relevant references and the deduced model
parameters from the knowledge of equilibrium distance (r0),
the bulk modulus (BT) and the Cauchy violation (C12 − C44)
are given in table 2. In an attempt to reveal the structural phase
transition of Zn1−x MxSe, we minimize the Gibb’s free energies
GB3(r) and GB1(r ′) for the equilibrium interatomic spacing
(r0) and (r ′

0). Initially, the computations were done at P = 0
from equation (5) to know at what value of r , dG/dr becomes
negative to positive for the stable phase, and subsequently
we input various pressures to find r with a similar method.
This enables one to obtain a pressure-dependent value of r .
Any crystal is stable if the change in the Gibb’s free energy
is positive for all possible infinitesimal changes in structure,
i.e. the first-order change in the enthalpy/Gibb’s free energy
must be zero and the second-order change must be positive.

The Gibb’s free energy difference, �G (=GB3(r) −
GB1(r ′)), has been plotted against pressure (P) in figures 1(a)–
(c) by using the interionic potential as discussed above. The
pressure corresponding to �G approaching zero is the phase
transition pressure (Pt) (as indicted by arrows in these figures).
At zero pressure, the B3 crystal phase is thermodynamically
and mechanically stable, while the phase B1 is not. As
pressure increases beyond the phase transition pressure (Pt),
the B1 system becomes mechanically and thermodynamically
stable and the �G values are negative compared to those
of the B3 phase. Eventually, at a pressure higher than the
theoretical thermodynamic transition pressure, the B3 structure
becomes thermodynamically unstable, while the B1 phase
remains stable from Pt up to pressures beyond 15 GPa.

Figure 1. (a)–(c) Variation of Gibbs free energy difference �G(P)
with pressure (P) for Zn1−x Mx Se (M = Mn, Fe and Cd).

In ZnxM1−x Se (M = Mn, Fe and Cd) DMS the structural
phase transition occurs from B3 to B1. Our theoretical results
are in almost excellent agreement with the experimental [9, 10]
data, as is seen from table 3. However, it is worthwhile pointing
out that the uncertainties in the transition pressures in some
cases are large as 10% or so. These deviations of 10% may be
for the reasons discussed by Van Vechten [33] and arise due to
the metastability in pressure experiments.

The values of the relative volumes V (P)/V (0) associated
with various compressions have also been calculated from the

4



J. Phys.: Condens. Matter 20 (2008) 075204 D Varshney et al

Table 2. Crystal data and model parameters for Zn1−x Mx Se (M = Mn, Fe and Cd).

Material parameters Model parameters

Solids ri (Å) r j (Å) a (Å) BT (GPa) b (1012 erg) ρ (10−1 Å) f (r)(10−3)

ZnSe 0.83a 1.94a 2.835b 62.37d 1.51 3.44 7.29
MnSe 0.8a 1.94a 2.556b 17.16d 1.48 6.7 17.5
FeSe 0.76a 1.94a 2.909c 58.85c 0.47 4.98 12
CdSe 1.03a 1.94a 3.04c 43.33c 0.88 4.4 7.32
Zn0.83Mn0.17Se 1.48 3.93 9.03
Zn0.84Fe0.16Se 1.34 3.68 8.03
Zn0.9Cd0.1Se 1.44 3.53 7.29

a Reference [29].
b Reference [30].
c Reference [31].
d Reference [32].

Table 3. Calculated (experimental) transition pressures and volume
collapses in Zn1−x Mx Se (M = Mn, Fe and Cd).

Transition pressure Volume collapses
Compounds Pt (GPa) (%)

Zn0.83Mn0.17Se 10(10.0)a 11.7(12.5)a

Zn0.84Fex0.16Se 12(11.4 ± 0.5)b 7.4(13.4)b

Zn0.9Cd0.1Se 10(9.5 ± 0.3)b 10(16.1)b

a Reference [10].
b Reference [9].

Murnaghan equation of state [34]:

V

V0
=

(

1 + B ′

B0
P

)− 1
B′

, (10)

with V0 as the unit cell volume at ambient conditions. The
estimated values of the pressure-dependent radii r(P) for both
structures (B3 and B1) have been used to compute the values of
V (P)/V (0) and plotted against the pressure (P) as illustrated
in figures 2(a)–(c) for Znx M1−xSe (M = Mn, Fe and Cd). It
is noticed from these plots that our approach has predicted
correctly the relative stability of competitive crystal structures,
as the value of �G are positive in both cases. The magnitude
of the volume collapse (−�V (Pt)/V (0)) at the transition
pressure is obtained from the phase diagram and values are
listed in table 3 and compared with the available experimental
results [9, 10]. Our calculated values for Zn0.83Mn0.17Se are in
reasonably good agreement, but this is not the case in the other
two materials, as is seen in table 3.

Initially, we have calculated the values of the model
parameters {b, ρ and f (r) } for pure ZnSe, MnSe, FeSe
and CdSe and then applied Vegard’s law for obtaining these
parameters for ZnxM1−x Se (M = Mn, Fe and Cd) at very low
concentration x = 0.17 at which the basic crystal structure
(or symmetry) does not change [27]. Thus, virtual crystal
approximation [27] through Vegard’s law [28] seems quite
valid. Using these model parameters, we have evaluated the
values of the SOECs and TOECs from their expressions given
in appendix B at different pressures. The calculated values
of these SOECs and TOECs are presented in figures 3(a)–(c)
and 4(a)–(c), respectively. These results could not be compared

Figure 2. (a)–(c) Pressure–volume diagram of Zn0.83Mn0.17Se,
Zn0.84Fe0.16Se and Zn0.9Cd0.1Se.

due to the lack of experimental data and hence they will serve
as a guide for experimental workers in future.

It is noticed from figures 3(a)–(c) that the values of
C11 and C12 increase linearly with increasing pressure. On
the contrary, the values of C44 decrease almost linearly with
increasing pressure. This feature is reasonable in view of the
physical difference in the characteristics of C11, C12 and C44.

5
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Figure 3. (a)–(c) Variation of second-order elastic constants with
pressure.

A similar trend of variations of C11, C12 and C44 with pressure
has been revealed by Miller et al [35] from their measured
values for HgTe and HgSe.

It seems worthwhile to mention that the Born criterion for
a lattice to be in a mechanically stable state is that the elastic
energy density must be a positive definite quadratic function of
the strain. The stability of a cubic crystal is expressed in terms
of the elastic constants [36]:

BT = (C11 + 2C12)/3 > 0, (11)

C44 > 0, (12)

σ = (C11 − C12)/2 > 0. (13)

Ci j are the conventional elastic constants and BT is the
bulk modulus. The quantities C44 and σ are the shear and
tetragonal moduli of a cubic crystal. Estimated values of
the bulk modulus (182 GPa), shear modulus (30 GPa) and
tetragonal moduli (87 GPa) for Zn1−x MxSe are found to satisfy
fairly well the above elastic stability criteria. In addition,
Vukcevich [37] proposed a high-pressure stability criterion for
ionic crystals, combining mechanical stability with minimum
energy conditions. In accordance, the stable phase of the
crystal is one in which the shear elastic constant (C44) is

Figure 4. (a)–(c) Variation of third-order elastic constants with
pressure.

nonzero (for mechanical stability) and which has the lowest
potential energy among the mechanically stable lattices. Also,
the pressure at which C44 = 0 (i.e. shear instability) indicates
the upper bound for the transition. It is true that the agreement
between the theoretical and experimental values of BT is not of
the desired degree but this might be because we have derived
our expressions neglecting the thermal effects and assuming
the overlap repulsion to be effective only up to the second
nearest neighbour ions.

Furthermore, C44 is very small: the calculated value of
((4r 2

0 /e2)C44 + 0.556(Z + 8 f (r0))) is found to be negative
so that (A2 − B2) is negative. This suggests that these terms
belong to an attractive interaction and possibly arise due to
the vdW energy. The vdW energy converges quickly, but
the overlap repulsion converges much more quickly. This
means that the second neighbour forces are entirely due to the
vdW interaction and the first neighbour forces are the results
of the overlap repulsion and the vdW attraction between the
nearest neighbours. However, at high pressures the short-range
forces for these compounds increase significantly, which in
turn is responsible for the change in the coordination number
and phase transformation. Other than deriving the equations
of state correctly from a lattice model approach and then
analysing the variation of the short-range forces, at present we

6
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Table 4. Pressure derivative of bulk modulus (BT), shear modulus
(C44) and tetragonal modulus (σ ) (in units of GPa) for Zn1−x Mx Se
(M = Mn, Fe and Cd).

Compounds dBT/dP dC44/dP dσ/dP

Zn0.83Mn0.17Se 3.66(5.43 ± 0.56)a 0.34 −0.03
Zn0.84Fe0.16Se 6.87(4.12 ± 0.19)b 11.2 −0.25
Zn0.9Cd0.1Se 4.85(4.32 ± 0.18)b 1.0 0.48

a Reference [7].
b Reference [6].

have no direct means to understand the nature of interatomic
interactions at high pressures.

We also intend to analyse the anharmonic properties of
Zn1−xMx Se compounds by computing the TOECs and the
pressure derivatives of SOECs at zero pressure, described
earlier [39]. The values of the pressure derivatives of SOECs
(dσ/dP , dBT/dP and dC44/dP) for Zn1−x MxSe are listed
in table 4. A reasonably good agreement with available
experimental results for dBT/dP has been obtained in all the
cases under consideration. Also, the variation of TOECs with
pressure is shown in figure 4. It can be seen that the variation
of third-order elastic constants with pressure points to the fact
that the values of C111, C112, C123, C166, C456 are negative
while that of C444 is positive as obtained from the effective
interionic potential at zero pressure. Thus, we can say that
in DMS the present effective interionic potential consistently
explains the high-pressure and elastic behaviour of Zn1−x MxSe
semiconducting compounds.

Apart from the phase transition and the pressure
dependence of SOECs, we have further estimated the Debye
temperature (θD) from the present model approach using the
expression [38]

θ3
D = 3.15

8π

(
h

kB

)3 ( r

M

) 3
2
(C11 − C12)

1
2

× (C11 + C12 + 2C44)
1
2 C

1
2

44, (14)

where M is the acoustic mass of the compounds and h and
kB are the Planck and Boltzmann constants, respectively. The
values of θD are plotted in figure 5 as a function of pressure.
It is inferred from the figure that θD decreases almost linearly
with pressure for all the compounds and this feature may be
attributed to the hardening of the lattice under pressure.

One can approximate this result with the definition of an
average elastic constant as

C =
(

8π

3.15

) 2
3
(

kB

h

)2 (
M

r

)

θ2
D, (15)

which in turn is calculated from the Debye temperature and
allows us to correlate the Cauchy discrepancy in the elastic
constant following

C∗ = C12 − C44

C12 + C44
, (16)

at zero pressure. Figure 6 shows the variation of the average
elastic constant (C) with the Cauchy discrepancy (C∗) for
Zn1−xMx Se compounds. It seems appropriate to mention that

Figure 5. Variation of Debye temperature with pressure.

Figure 6. The average elastic constant (C) plotted as a function of
the Cauchy discrepancy (C∗) for Zn1−x Mx Se compounds.

C44 is larger than C12, which is consistent with the available
experimental data on PbTe and SnTe [35]. However, we note
that the DMS with ZB structure undergo the structural phase
transition (B3 → B1) [39], the rare earth compounds [38],
Y (Sc) antimonides (B1 → B2) [40] and alkaline earth
chalcogenides [41] show a positive Cauchy deviation C∗.

4. Conclusion

At ambient pressures the DMS based on ZB II–VI compounds,
such as (Zn, M)Se (M = Mn, Cd and Fe) crystallize in
a B3 structure. As pressure is raised, one expects that
these semiconductors show the ZB → RS structural phase
transitions. To determine the most stable structure at finite
pressure and temperature, the free energy G = U + PV − T S
should be used. Since the reported phase transformation
for AII

1−xMnx CVI group AII
1−x MnxCVI DMS transformations

are temperature independent, we neglect the last term and
therefore calculated the pressure-induced elastic properties
with stable ZB structures following the lattice models.

The computational methods for the determination of co-
hesive, structural and vibrational properties of semiconductors
under pressure are now successfully being performed by means

7
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of ab initio calculations such as the local density approxima-
tion and molecular dynamics methods. Despite the rapid devel-
opment of computational techniques, the nature of interatomic
forces in these materials is not well understood and lattice
dynamical models are important in interpreting the chemical
trends in structural stability. Realistic descriptions of alloys or
semiconducting compounds need to take in to account various
interactive forces when the lattice is strained and a balance of
them to attain a stable structure depending upon the ionic or
covalent nature.

We have formulated an effective interionic interaction
potential for analysing the structural phase transition and
mechanical (elastic) properties of some DMS materials. The
values from the model parameters allow us to predict the
experimental values available for the phase transition pressures
and associated volume collapses in DMS materials Zn1−x MxSe
(M = Mn, Fe and Cd). A structural phase transition occurs at
10 GPa in Zn0.83Mn0.17Se, at 12 GPa in Zn0.84Fex0.16Se, and at
10 GPa in Zn0.9Cd0.1Se, each into the RS-type structure. We
stress that the vast volume discontinuity in pressure–volume
phase diagram is ascribed in terms of the structural phase
transition from ZS (B3) to RS (B1) structure. For these three
compounds excellent agreement is found with the available
data.

The remarkable feature revealed from the lattice models
is that the vast volume discontinuity in the pressure–volume
phase diagram is ascribed to the structural phase transition
from ZB (B3) to RS (B1) structure. Precise first-principles
calculations on structural properties are widely available, but
we still feel that the lattice model calculations have their
own importance. The ability of the effective interionic
interaction potential (EIoIP) model to predict realistic cohesive
properties such as the equilibrium volume, the bulk modulus,
its derivative with pressure, the relative stability of crystal
structures, and transition pressures and volumes is exemplified
in terms of the screening of the effective Coulomb potential
through the modified ionic charge (Z 2

m).
The calculations based on the lattice model also show

the validity of the Born criterion. The second-order elastic
constants C11 (C12) increase with increase in pressure up to the
phase transition pressure that supports high-pressure structural
stability of these compounds. Further, C44 decreases linearly
with the increase of pressure and does not tend to zero at the
phase transition pressures, and this feature is in accordance
with the first-order character of the transition. The consistency
of the results obtained from the TBI potential arose because
the electron-shell deformation, when the nearest neighbour
ions overlap, is enhanced under pressure. This supports
our view of a partially ionic character and a charge transfer.
It is thus obvious from the overall results that the present
TBI mechanism is adequately suited for a description of the
phase transition phenomena and mechanical properties, and we
stress that the TBI gives a realistic representation of interionic
interaction capable of explaining the elastic behaviour. Our
results are in good agreement with known theoretical and
experimental works.

In conclusion, the proper incorporation of realistic
physical parameters based on experimental observations will

allow us to reveal a consistent high-pressure structural and
mechanical behaviour of these compounds. Deviations
appearing might be ascribed to the extension of the covalent
and zero point motion effects. Efforts are being made to apply
the many body interactions approach to describe the phase
transition and volume collapses caused under pressure in other
members of the DMS family.
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Appendix A

In order to understand the charge transfer mechanism and
the nature of the TBI, let us consider the ions A, B
and C designated by (lk), (l ′k ′) and (l ′′k ′′), as shown in
figure A.1, with l and k as the cell and basis indices.
During the compression, the electron shells of A and C
experience increased overlap and give rise to the transferred
(or exchanged) charge:

�gk = ±Zefk{r(lk, l ′k ′′)},
= ±Zefk(r) (A.1)

Ze being the ionic charge and fk(r), the function of the nearest
neighbour separation [r = r(lk, l ′k ′′)] such that:

fk(r) = (Zk/Z) f (r),

with
Z = |Zk | = |Z ′

k |. (A.2)

Thus, the ionic charge of A (or C) gets modified as:

Zmke = Zke ± ne fk(r(lk, l ′′k ′′))
≈ ±Zke[1 ± (2n/Z ) f (r(l ′k ′, l ′′k ′′))]1/2 (A.3)

n being the number of nearest neighbours in equation (A.3) by
expressing (1 ± n/Z f (r)) ≈ (1 ± (2n/Z) f (r))1/2. Thus, one
writes

Zmk′ e = ±Z ′
ke[1 ± (2n/Z) f (r(l ′k ′, l ′′′k ′′′))]1/2 (A.4)

in view of the smallness of f (r).
Here, (l ′′′k ′′′) ion is the nearest neighbour of ion B and this

is not shown in figure A.1. The modified Coulomb interaction
potential can now be written as:

	mc(r(lk, l ′k ′)) = Zmk Zmk′ e2/|r(lk, l ′k ′)|
= (e2/2)

∑

lk

∑

l′k′
Zkk′ /|r(lk, l ′k ′)| + e2

∑

lk

∑

l′k′

∑

l′′k′′
Zk

× f (r(lk, l ′′k ′′))Zk′/|r(lk, l ′k ′)|. (A.5)

The second term in equation (A.5) is the potential energy due
to the interaction of transferred (or exchanged) charge �gk =
Zef (r(lk, l ′′k ′′)) on the atom (lk) from the overlapping ions
(l ′′k ′′) of charge Z ′′′

k e and separated by a distance r(lk, l ′′k ′′):
this interaction potential is termed the TBI potential since it
depends on the coordinates of the three ions (lk), (l ′k ′) and
(l ′′k ′′).

8
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Figure A.1. Schematic representation of the TBI.

The charge transfer mechanism rests on the three-body
parameter f (r). f (rik) [or f (r ′

ik)] is dependent on the nearest
neighbour separation (r ) as [21]:

f (r) = f0 exp(−r/ρ) (A.6)

with ρ as the range parameter defined previously.

Appendix B

We have also investigated the pressure variations of the SOECs
and TOECs. The relevant expressions for the SOECs, TOECs
and the pressure derivatives of SOECs are expressed [18] for
the ZB structure as

C11 = L[0.2477Z(Z + 8 f (r0)) + 1
3 (A1 + 2B1)

+ 1
2 (A2 + B2) + 5.8243Za f ′(r0)], (B.1)

C12 = L[−2.6458Z(Z + 8 f (r0)) + 1
3 (A1 − 4B1)

+ 1
4 (A2 − 5B2) + 5.8243Za f ′(r0)], (B.2)

C44 = L[−0.123Z(Z + 8 f (r0)) + 1
3 (A1 + 2B1)

+ 1
4 (A2 + 3B2) − 1

3∇(−7.53912Z(Z + 8 f (r0))

+ A1 − B1)] (B.3)

C111 = L[0.5184g + 1
9 (C1 − 6B1 − 3A1)

+ 1
4 (C2 − B2 − 3A2) − 2(B1 + B1)

− 9.9326Zg1 + 2.522Zg2], (B.4)

C112 = L[0.3828g + 1
9 (C1 + 3B1 − 3A1)

+ 1
8 (C2 + 3B2 − 3A2) − 11.642Zg1 + 2.522Zg2] (B.5)

C123 = L[6.1585g + 1
9 (C1 + 3B1 − 3A1)

− 12.5060Zg1 + 2.5220Zg2], (B.6)

C144 = L

{

6.1585g + 1
9 (C1 + 3B1 − 3A1) − 4.1681Zg1

+ 0.8407zg2 + ∇[−3.3507g − 2
9 C1 + 13.5486Zg1

− 1.681Zg2] + ∇2

[

−1.5637g + 2

3
A1 − B1) + C1

9

− 5.3138Zg1 + 2.9350Zg2

]}

(B.7)

C166 = L

{

−2.1392g + 1
9 (C1 − 6B1 − 3A1)

+ 1
8 (C2 − 5B2 − 3A2) − (B1 − B2) − 4.168Zg1

+ 0.8407Zg2 + ∇[−8.3768g + 2
3 (A1 − A2)

− 2
9 C1 + 13.5486Zg1 − 1.6813Zg2]

+ ∇2

[

2.3527g + C1

9
− 5.3138Zg1 + 2.9350Zg2

]}

(B.8)

C456 = L

{

4.897g + 1
9 (C1 − 6B1 − 3A1) − B2

+ ∇[−5.0261g − 1
9 C1] + ∇2[7.0580g

+ 1
3 C1] + ∇3[−4.8008g + 1

3 (A1 − B1) − 1
9 C1]

}

. (B.9)

Using the equilibrium condition

B1 + B2 = −1.261Z [Z + 8 f (r)]. (B.10)

In addition, the pressure derivatives of second-order elastic
constants are expressed as

3

dBT

dp
= −[20.1788Z(Z + 8 f (r0)) − 3(A1 + A2)

+ 4(B1 + B2) + 3(C1 + C2) − 104.8433Za f ′(r0)

+ 22.7008Za2 f ′′(r0)] (B.11)

2

dσ

dp
= −[−11.5756Z(Z + 8 f (r0)) + 2(A1 − 2B1)

+ 3
2 A2 − 7

2 B2 + 1
4 C2 + 37.5220Za f ′(r0)] (B.12)

and



dC44

dp
= −

{[

0.4952Z(Z + 8 f (r0)) + 1

3
(A1 − 4B1 + C1)

+ 1
4 (2A2 − 6B2 + C2)

+ 4.9667Za f ′(r0) + 2.522Za2 f ′′(r0)

]

+ ∇[−17.5913Z(Z + 8 f (r0)) + A1 − B2

− 2
3 C1 + 40.6461Za f ′(r0) − 5.044Za2 f ′′(r0)]

+ ∇2

[

3.1416Z(Z + 8 f (r0)) + 2

3
(A1 − B1) + C1

3

− 15.9412Za f ′(r0) + 8.8052Za2 f ′′(r0)

]}

. (B.13)

Various symbols appear in the earlier equations (5)–(16) which
are associated with the crystal energy and have been defined
below:

A1 = Ai j = L ′
(

d2

dr 2
V S R

i j (r)

)

r=r0

, (B.14)

A2 = Aii = A j j = L ′
(

d2

dr 2
V S R

ii (r) + d2

dr 2
V S R

j j (r)

)

r=r0

,

(B.15)

B1 = Bi j = L ′

a

(
d

dr
V S R

i j (r)

)

r=r0

, (B.16)

B2 = Bii = B j j = L ′

a

(
d

dr
V S R

ii (r) + d

dr
V S R

j j (r)

)

r=r0

, (B.17)

9
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C1 = Ci j = L ′a
(

d3

dr 3
V S R

i j (r)

)

r=r0

, (B.18)

C2 = Cii = C j j = L ′a
(

d3

dr 3
V S R

ii (r) + d3

dr 3
V S R

j j (r)

)

r=r0

,

(B.19)

g = Z + 8 f (r) (B.20)

g1 = rod f (r) (B.21)

g(2) = rodd f (r) (B.22)

∇
=

[ −7.5391Z(Z+8 f (r0))+(A1−B1)

−3.141Z(Z+8 f (r0))+(A1+2B1)+21.765Za f ′(r0)

]

,

(B.23)

BT = 1
3 (C11 + 2C12) (B.24)

with L = (e2/4a4) and L ′ = (4a3/e2), and

σ = 1
2 (C11 − C12), (B.25)

in the form of

V S R
i j (r) = bβi j exp

(
ri + r j − ri j

ρ

)

− ci j

r 6
i j

− di j

r 8
i j

. (B.26)

The short-range interaction energy is expressed in terms of
the overlap repulsion (first term) and the vdW d–d and d–q
attractions (second and third terms), respectively.

References

[1] Mujica A, Rubio Angel, Munoz A and Needs R J 2003 Rev.
Mod. Phys. 75 863

[2] Chantis A N, van Schilfgaarde M and Kotani T 2006 Phys. Rev.
Lett. 96 086405

[3] Belogorokhov A, Florentsev A, Belogorokhov I and
Elyutin A 2006 Phys. Solid State 48 637

[4] Jain M 1991 Diluted Magnetic Semiconductors (Singapore:
World Scientific)

[5] Firszt F 1993 Semicond. Sci. Technol. 8 721
Firszt F, Meczynska H, Sekulska B, Szatkowski J,

Paszkowicz W and Kachniarz J 1995 Semicond. Sci.
Technol. 10 197

Paszkowicz W, Firszi F, Legowski S, Meczynska H,
Zakrzewski J and Marczak M 2002 Phys. Status Solidi b
229 57

[6] Peterson D L, Petrou A, Giriat W, Ramdas A K and
Rodriguez S 1986 Phys. Rev. B 33 1160

[7] Furdyna J K, Giriat W, Mitchell D F and Sproule G I 1983
J. Solid State Chem. 46 349

[8] Arora A K, Suh E-K, Debska U and Ramdas A K 1988 Phys.
Rev. B 37 2927

[9] Lin C-M, Chuu D-S, Xu J-a, Huang E, Chou W-C, Hu J-Z and
Pei J-H 1998 Phys. Rev. B 58 16

[10] Lin C-M, Chuu D-S, Yang T-J, Chou W-C, Xu J-a and
Huang E 1997 Phys. Rev. B 55 13641

Lin C-M and Chuu D-S 2000 Phys. Lett. A 266 435
Lin C-M and Chuu D-S 2001 Physica B 304 221
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